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Abstract

Background: Immune checkpoint inhibitors (ICIs) have substantially improved

overall survival in patients with advanced melanoma; however, the lack of bio-

markers to monitor treatment response and relapse remains an important clinical

challenge. Thus, a reliable biomarker is needed that can risk‐stratify patients for
disease recurrence and predict response to treatment.

Methods: A retrospective analysis using a personalized, tumor‐informed circulating
tumor DNA (ctDNA) assay on prospectively collected plasma samples (n = 555)

from 69 patients with advanced melanoma was performed. Patients were divided

into three cohorts: cohort A (N = 30), stage III patients receiving adjuvant ICI/

observation; cohort B (N = 29), unresectable stage III/IV patients receiving ICI

therapy; and cohort C (N = 10), stage III/IV patients on surveillance after planned

completion of ICI therapy for metastatic disease.

Results: In cohort A, compared to molecular residual disease (MRD)‐negative pa-
tients, MRD‐positivity was associated with significantly shorter distant metastasis‐
free survival (DMFS; hazard ratio [HR], 10.77; p = .01). Increasing ctDNA levels from

the post‐surgical or pre‐treatment time point to after 6 weeks of ICI were predic-
tive of shorter DMFS in cohort A (HR, 34.54; p < .0001) and shorter progression‐
free survival (PFS) in cohort B (HR, 22; p = .006). In cohort C, all ctDNA‐negative
patients remained progression‐free for a median follow‐up of 14.67 months,

whereas ctDNA‐positive patients experienced disease progression.

See editorial on pages 000–000, this issue.

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2023 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.

Cancer. 2023;1–12. wileyonlinelibrary.com/journal/cncr - 1

 10970142, 0, D
ow

nloaded from
 https://acsjournals.onlinelibrary.w

iley.com
/doi/10.1002/cncr.34716 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [06/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/cncr.34716
https://orcid.org/0000-0002-2307-7030
https://orcid.org/0000-0002-3850-260X
mailto:Zeynep.Eroglu@moffitt.org
https://orcid.org/0000-0002-2307-7030
https://orcid.org/0000-0002-3850-260X
https://doi.org/10.1002/cncr.34714
http://wileyonlinelibrary.com/journal/cncr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcncr.34716&domain=pdf&date_stamp=2023-03-04


Conclusion: Personalized and tumor‐informed longitudinal ctDNA monitoring is a

valuable prognostic and predictive tool that may be used throughout the clinical

course of patients with advanced melanoma.

K E YWORD S

advanced melanoma, circulating tumor DNA (ctDNA), immune checkpoint inhibitors (ICI),
molecular residual disease (MRD), treatment monitoring

INTRODUCTION

Melanoma has the highest rate of mortality among all skin cancers,

accounting for >80% of skin cancer‐related deaths.1,2 In recent years,
the clinical adoption of immune checkpoint inhibitors (ICIs), as well as

BRAF/MEK inhibitors have led to substantial improvement in the

overall survival (OS) rates of patients with advanced melanoma.3‐7

The 5‐year survival rate has improved from <10% in patients

treated with chemotherapy to 26%–52% in patients receiving

immuno‐ and/or targeted therapies.5,8‐10

Adjuvant systemic therapy (nivolumab, pembrolizumab, or BRAF

targeted therapy) is currently recommended for patients with

resectable advanced melanoma.11 For patients with unresectable

melanoma, the available first‐line regimens include anti–PD‐1 mon-
otherapy, anti–PD1‐based combination immunotherapy, or BRAF‐
targeted therapy for tumors with BRAF V600 mutations.11 Howev-

er, treatment resistance with targeted therapies and limited response

to immunotherapies may be observed.8,12‐14 Additionally, high cost

and treatment‐induced toxicity, as well as the phenomenon of ICI‐
induced pseudoprogression cause significant challenges in the suc-

cessful adoption of these therapies.15‐17

National Comprehensive Cancer Network guidelines currently

recommend periodic imaging and/or clinical assessment to determine

therapeutic efficacy or disease progression.11 However, imaging‐
based surveillance suffers from limitations in how frequently it may

be performed, false positivity, andmisinterpretation of results that can

lead to expensive and unnecessary procedures.18–20 Although plasma

lactate dehydrogenase (LDH) levels can be prognostic in melanoma,

only 30%‐40% of patients with stage IV disease have elevated LDH at
baseline and it can frequently become elevated due to treatment

toxicity or other reasons unrelated to disease state.21,22 Currently,

there are no other clinically useful blood‐based biomarkers available
that can assess treatment response and/or disease progression in real‐
time and help optimize subsequent treatment strategies.23

Recent studies have demonstrated the potential of plasma

circulating tumor DNA (ctDNA) as a prognostic and predictive

biomarker in melanoma independent of baseline clinical parame-

ters.24 In patients with advanced melanoma, undetectable or low

levels of ctDNA at baseline, before any therapy, may be indicative of

longer progression‐free survival (PFS) and OS.25 The postoperative
detection of ctDNA may also be predictive of disease relapse in pa-

tients with stage III melanoma.26,27 Additionally, monitoring ctDNA

dynamics longitudinally could identify disease progression earlier

than radiologic assessment, because it may be a predictor of

response to treatment.24,28,29 However, these studies have used

digital droplet polymerase chain reaction (ddPCR) or similar meth-

odologies for ctDNA analysis that only followed one known tumor

mutation, and thus could not be used in a significant percentage of

patients without common melanoma mutations. Notably, mutations

in BRAF, NRAS, and KIT are reported to occur in approximately 38%–

45%, 20%, and 10% of patients with melanoma, respectively, and

detection of ctDNA containing BRAF and NRAS mutations is appli-

cable in only approximately 50% of melanoma patients.24,30,31

Furthermore, tracking multiple tumor mutations per patient may

also increase the efficacy of a ctDNA assay in predicting clinical out-

comes. Therefore, we sought to evaluate the predictive and prognostic

valueof a personalized, tumor‐informed ctDNAassay for the detection
of molecular residual disease (MRD) after curative surgery and to

assess treatment response in patients with stage III–IV melanoma.

MATERIALS AND METHODS

Subjects and study design

This study represents a retrospective analysis of real‐world data

from prospectively collected, longitudinal plasma samples (n = 555)

from stage III–IV melanoma patients treated between April 2020 to

March 2022. Patients were divided into three different cohorts

(Figure 1): 1) cohort A (N = 30, stage III): adjuvant setting, wherein

post‐resection patients were either initiated on anti–PD‐1 therapy or
observation, with samples on ICI collected approximately every

4 weeks; 2) cohort B (N = 29, stage III/IV): ICI treatment setting,

wherein patients with unresectable melanoma received first‐line PD‐
1 inhibitor‐based treatment, with samples collected every 3 or

4 weeks depending on ICI regimen; and 3) cohort C (N = 10, stage III/

IV): post‐ICI surveillance setting, wherein patients with complete

response (CR) at the end of the first year or with stable disease (SD)/

partial response (PR) at the end of second year were monitored after

anti–PD‐1 therapy. For patients on surveillance in all three cohorts,
samples were collected every 12 weeks at the time of radiographic

imaging (computed tomography [CT] or positron emission tomogra-

phy [PET]/CT). All clinical data were abstracted and interpreted by

the clinical team. The study was approved by the corresponding

ethical and independent review services and was conducted in

accordance with the Declaration of Helsinki.

2 - CTDNA‐BASED ICI MONITORING IN MELANOMA
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Personalized ctDNA assay using multiplex PCR‐based
next‐generation sequencing workflow

For all patients, blood specimens (two 10‐mL Streck tubes) were
collected at the time of each ICI treatment or at the time of scans

for patients on surveillance, with an average of nine samples per

patient (range, 1–19). All biological specimens were processed

following a Clinical Laboratory Improvement Amendments‐validated
standard operating procedure at Natera. Personalized, tumor‐
informed ctDNA assays (Signatera) were designed as previously

described.32 Briefly, whole‐exome sequencing (WES) was performed
on formalin‐fixed and paraffin‐embedded tumor tissue along with

matched normal blood samples from each patient. A set of up to 16

high‐ranked, patient‐specific, somatic, single nucleotide variants

(SNVs) from WES were selected for multiplex PCR (mPCR) testing.

The mPCR primers targeting the personalized SNVs were used to

track ctDNA in the respective patients' plasma. Plasma samples

with two or greater SNVs detected above a predefined algorithm's

confidence threshold were considered ctDNA‐positive. ctDNA

concentration (levels) was reported as mean tumor molecules

(MTM) per mL of plasma.

Genomic analysis to estimate tumor mutational
burden and identify driver variants

Whole exome VCF files were used to calculate tumor mutational

burden (TMB) based on all somatic SNVs per Mb for all 69 patients

as previously described.33 A subanalysis of 39 patients with

measurable disease was performed to determine the predictive

value of TMB in response to ICI therapy. The prevalence of driver

mutations known to be associated with melanoma (listed in

Figure 6) was evaluated.34–38

Statistical analysis

The ctDNA statistical analysis plan was developed before the

reconciliation of the laboratory and de‐identified clinical data.

Samples were analyzed by the data assessors at Natera who were

blinded to patient outcomes. Statistical significance was evaluated

using Fisher's exact test for categorical variables. For stage III

patients, the primary outcome measure was distant metastasis‐free
survival (DMFS), assessed between the date of resection and

radiologic and/or clinical distant relapse and/or death. For unre-

sectable melanoma patients, the primary outcome measure was

PFS, assessed between the date of the first blood draw and

the date of radiologic and/or clinical disease progression. The

Kaplan–Meier method was used for estimating the survival distri-

butions. Log‐rank test or Cox proportional hazards model was

used for comparing two survival distributions with p ≤ .05 being

considered significant. Statistical analyses were performed in

STATA v16.1.

RESULTS

Patient and tumor characteristics

Of the 73 patients in the study, personalized ctDNA assays were

successfully designed for 69 (94.5%) patients, since four patients

had insufficient tumor tissue. In cohort A (N = 30), 24 (80%)

F I GUR E 1 CONSORT diagram showing enrollment of patients into three subcohorts. For cohort C, durable response with the previous
line of therapy was defined as complete response for 1 year or stable disease or partial response for 2 years.
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patients received adjuvant nivolumab treatment and six (20%)

underwent observation. Of these six patients, five had received

ICI therapy before relapse and/or surgery and one had underlying

comorbidity. A total of 233 plasma samples were collected

starting 4 weeks post‐surgery and during follow‐up for a median

of 19.6 months (range, 0.4–24.2). In cohort B (N = 29), all pa-

tients received first‐line anti–PD‐1 treatment for advanced dis-

ease; 12 patients received nivolumab alone, 14 received

ipilimumab/nivolumab, and three received anti–PD‐1 combined

with a non‐ICI agent. Baseline (before treatment) plasma samples
were collected from 28 patients and longitudinal on‐treatment
plasma samples (n = 232) were collected from 29 patients. The

median follow‐up time was 14.2 (range, 0.2–20.8) months. In post‐
ICI cohort C (N = 10), a total of 62 plasma samples were

collected with a median follow‐up of 14.7 (range, 14.1–18.2)

months. Patient characteristics for all cohorts are summarized in

Table 1.

Genomic analysis

TMB was calculated with a median of 14.4 mutations per megabase

(Mb) (range, 0.03–184 mutations/Mb) (Figure S1A) across all 69

patients. Pathogenic and likely pathogenic somatic mutations in NF1,

TERT, RB1, BRAF, BRCA1, and BRCA2 genes were observed in >50%
of the patients whereas mutations in IDH1, MEK1, MEK2, PTEN,

CDK4, and CDK6 genes were observed in <10% of the patients

(Figure S1B).

Cohort A: ctDNA detection at the MRD time point is
prognostic of distant metastasis‐free survival

Of the 30 patients in cohort A (adjuvant setting), 29 had plasma

samples available at the MRD time point (after resection and

before adjuvant therapy). Of the 29 patients, five (17%) were

MRD‐positive and 24 (83%) were MRD‐negative (Figure 2A). Of

the five MRD‐positive patients, three (60%) experienced distant

relapse within 4 months after surgery. In contrast, only one pa-

tient (4%) from the MRD‐negative cohort experienced distant

relapse, 12 months after surgery. In seven instances of relapse

so far (one patient had multiple relapses), ctDNA was either

detectable post‐surgery or became detectable during serial

monitoring in five instances. In two relapse cases—one local

subcentimeter dermal metastasis (Patient 29) and a small adre-

nal metastasis (Patient 27)—molecular evidence of relapse was

not observed. Therefore, sensitivity was 83% for distant relapses,

with specificity of 96%. ctDNA analysis allowed an average

lead time of 3 months over standard imaging (PET/CT or CT)

(Figure 2B). Compared to the baseline MRD‐negative patients,

the MRD‐positive patients had a significantly shorter DMFS

(median 4 months vs. not reached; HR, 10.77; p = .01)

(Figure 2C).

Next, we evaluated the effect of adjuvant immunotherapy on

MRD‐positive patients' outcomes. The MRD‐positive patients who
did not receive adjuvant therapy (observation; N = 2) relapsed within

4 months (100%), whereas one of the three (33%) patients receiving

adjuvant ICI therapy relapsed within the same period. (Figure 2A).

DMFS stratified by the presence or absence of adjuvant ICI in the

MRD‐positive patients is shown in Figure S2.

Cohort A: ctDNA status during ICI therapy is
prognostic of patient outcomes

Compared to ctDNA‐negative patients, ctDNA‐positivity observed
at week 4 (N = 24) and week 6 (N = 27) of adjuvant treatment was

significantly associated with an inferior DMFS (week 4: median,

11.5 months if ctDNA‐positive vs not reached; HR, 6.9, p = .025;

Figure 3A; and week 6: median, 3.5 months if ctDNA‐positive vs.
not reached; HR, 34.54, p < .0001; Figure 3B). Week 6 ctDNA

status appeared to have a stronger correlation with clinical out-

comes than week 4 status. We also assessed the association of

ctDNA dynamics with DMFS. Patients who became ctDNA‐positive
(N = 2, p = .025) or remained persistently positive (N = 2;

p < .0001) during treatment had significantly worse DMFS

compared to ctDNA‐negative patients (Figure 3C). In contrast, those
who became ctDNA‐negative (N = 2) or remained negative (N = 25)

had similar outcomes, superior to those of the ctDNA‐positive pa-
tients (Figure 3C).

Cohort B: ctDNA is detectable in advanced melanoma
and its dynamics are predictive of response to first‐
line ICI treatment

Of the 29 patients in Cohort B (advanced melanoma on first‐line
ICI), baseline ctDNA was detected in 26 (90%) patients before

the start of first‐line ICI treatment (Figure 4A). Four patients had
baseline ctDNA levels above the 75th percentile (median ctDNA

level, 2965 MTM/mL, range, 138–25,858 vs. cohort median 9.8

MTM/mL, range, 7–25,859). Notably, three of these four patients

died very early in their ICI therapy regimen (median, 1 month;

treatment range, 0.27–1.86 months), with accelerated disease

progression.

For patients with baseline positivity and serial ctDNA testing, we

then evaluated the correlation between ctDNA status/dynamics

and response to first‐line ICI treatment (N = 19). (Three patients who

received non‐ICI with ICI combination regimens were excluded from
this analysis due to the potential synergistic effects of the non‐ICI
agents on ctDNA kinetics.) ctDNA‐positivity at weeks 3–11 (cycle [C]
2–4) of first‐line ICI treatment was associated with worse PFS

(p = .015) (Figure 5A) compared to ctDNA‐negative patients. In addi-
tion, patients with any increase in ctDNA level at this time point had a

significantly shorter PFS, compared to patients with a decrease in

ctDNA levels (median, 5.7 months vs. not reached; HR, 22; p = .006)

4 - CTDNA‐BASED ICI MONITORING IN MELANOMA
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TAB L E 1 Patient demographics and baseline characteristics.

Patient characteristics

Patients, No. (%)

Cohort A (N = 30) Cohort B (N = 29) Cohort C (N = 10)

Age (median), years (range) 72 (21–90) 64 (39–89) 66 (51–85)

Gender

Male 16 (53) 20 (69) 7 (70)

Female 14 (47) 9 (31) 3 (30)

AJCC clinical stage (V8)

IIIA — — —

IIIB 15 (50) — —

IIIC 15 (50) 1 (3) 3 (30)

IIID — — —

IV — 28 (97) 7 (70)

Ulceration

Absent 14 (47) 5 (17) 2 (20)

Present 11 (36) 7 (24) 1 (10)

Unknown 5 (17) 17 (59) 7 (70)

BRAF V600 status by targeted sequencing

Wild‐type 19 (64) 19 (66) 7 (70)

Mutated 10 (33) 9 (31) 3 (30)

Unknown 1 (3) 1 (3) —

BRAF V600 status by WES

Mutated 10 (33) 9 (31) 3 (30)

LDH level (baseline)

Normal 23 (77) 18 (62) 3 (30)

Elevated 4 (13) 11 (38) 7 (70)

Unknown 3 (10) — —

Type

Cutaneous 28 (94) 22 (76) 5 (50)

Acral 1 (3) 1 (3) 1 (10)

Lentigo — 1 (3) —

Mucosal — 1 (3) 1 (10)

Unknown 1 (3) 4 (15) 3 (30)

Treatment N/A

Adjuvant nivolumab 24 (80) — —

Adjuvant observation 6 (20) — —

1st‐line nivolumab — 12 (41) —

1st‐line ipilimumab/nivolumab — 14 (48) —

1st‐line ICI + agent — 3 (10) —

No. of metastatic sites N/A N/A

0 1 (3)

<3 13 (45)

>3 15 (52)

Abbreviations: AJCC, American Joint Committee on Cancer; ICI, immune checkpoint inhibitor; LDH, lactate dehydrogenase; N/A, not applicable; WES,

whole‐exome sequencing.
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(Figure 5B). Similar findings were observed at 6 weeks of first‐line ICI
treatment, with significantly worse PFS in patients with increasing

ctDNA at this time point versus decreasing and/or undetectable

ctDNA (median, 7.5 months vs. not reached; HR, 18; p = .013)

(Figure S3).

Next, the association of ctDNA status at weeks 3–11 (C2–4) with

Response Evaluation Criteria in Solid Tumors (RECIST)‐based
response was investigated. ctDNA was detected during serial moni-

toring in all four patients who experienced progressive disease (PD) by

C4,whereas 10of 15 (67%) patientswith PR/CRwere ctDNA‐negative
(Figure 5C). All patients (10 of 10) who were ctDNA‐negative at this
time point had evidence of radiographic response (PR/CR). Similarly,

ctDNA dynamics at this timewas associatedwith response, as 100% (4

of 4) of patients who experienced PD had an increase in ctDNA at this

time,whereas 100% (15 of 15) of patientswith a ctDNAdecrease had a

radiographic response (PR/CR) (Figure 5D).

Although ctDNA clearance was associated with a PR or CR by

imaging (Figure 5E), an early increase in ctDNA levels was associated

with primary resistance to first‐line ICI treatment (Figure 5F). One
patient, demonstrating transient ctDNA clearance, eventually expe-

rienced disease progression over 12 months after initiating ICI

treatment, suggesting acquired resistance, and the patient's ctDNA

became detectable 5.4 months before PD. (Figure 5G). In addition,

compared to radiographic imaging, ctDNA dynamics correctly iden-

tified a patient with true progression (Patient 40, Figure 4A) and

pseudoprogression (Patient 58, Figure 4A).

Cohort C: ctDNA‐positivity precedes clinical
progression post‐ICI treatment

Of the 10 patients in the post‐ICI completion surveillance setting,
nine (90%) were ctDNA‐negative at the time of enrollment and the
majority (7 of 10, 70%) remained ctDNA‐negative (Figure 4B). All (7
of 7) ctDNA‐negative patients remained progression‐free until

the last follow‐up (median, 14.67; range, 14.13–18.23 months). Of
the three ctDNA‐positive patients, two patients subsequently pro-
gressed, whereas the third died shortly after the positive result,

clinically from cancer recurrence. For these patients, ctDNA‐
positivity preceded clinical progression by a median of 3.34 (range,

0.6–6.9) months. Two of the three ctDNA‐positive patients benefited
from subsequent radiotherapy or targeted therapy resulting in

ctDNA clearance and showed continued treatment response for at

least 6 and 9 months. Overall, these results indicate that

F I GUR E 2 In the adjuvant setting (cohort A), ctDNA detection is predictive of DMFS. (A) Swimmer's plot shows clinical outcomes, duration
of adjuvant therapy, and longitudinal ctDNA analysis for each patient. Of the six patients in the observation arm, five patients had received

prior systemic therapy before surgery and enrollment (except patient 29). (B) Average lead time to relapse. (C) Patients stratified by ctDNA
status at MRD time point, with median DMFS for the ctDNA‐positive group of 4 months and not reached for the ctDNA‐negative group.
Shaded areas in the Kaplan–Meier plots indicate 95% CIs. CIs indicate confidence intervals; ctDNA, circulating tumor DNA; DMFS, distant

metastasis‐free survival; MRD, molecular residual disease.

6 - CTDNA‐BASED ICI MONITORING IN MELANOMA
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undetectable serial ctDNA post‐ICI treatment was associated with a
favorable outcome.

Change in ctDNA combined with TMB status is
prognostic of patient outcomes

In a subanalysis of patients (N = 39; cohorts B and C), the predictive

value of TMB was evaluated in response to ICI therapy. In the cohort

of patients with measurable disease, 25% (3 of 12) of those with low

TMB status (≤14.7 mutations/Mb) presented with PD during treat-

ment with ICI, whereas 18.5% (5 of 27) of patients with high TMB

(>14.7 mutations/Mb) did not respond to treatment (Figure 6). Next,
we compared ctDNA status and dynamics at weeks 3–11 (C2–4) with

TMB in stage IV patients receiving first‐line ICI treatment. As

demonstrated in Figure 5A, a strong association between change in

ctDNA at C2–4 and PFS was observed (p = .015); however, TMB

alone was not predictive of PFS (p = .26) (Figure S4A). On combining

ctDNA status with TMB status, compared to patients with high TMB

or ctDNA‐negativity, patients with low TMB and positive ctDNA

status had a significantly worse PFS (p = .039) (Figure S4B). These

data suggest that ctDNA status and/or dynamics could add value to

patient prognostication.

DISCUSSION

This study demonstrates the feasibility of performing a personalized,

tumor‐informed ctDNA assay for the detection of MRD and moni-

toring response to ICI treatment in a real‐world cohort of patients
with stage III‐IV melanoma. Although previous studies have shown

the prognostic and predictive value of ctDNA monitoring in patients

with advanced melanoma, these studies have primarily focused on

ctDNA methodologies designed to detect or monitor single hotspot

mutations in BRAF, NRAS, KIT, and/or TERT promoter. Therefore, a

ctDNA testing methodology that tracks mutations beyond common

driver variants and tracks multiple patient‐specific mutations may be
more useful and sensitive to tumor dynamics in clinical practice.

This personalized, tumor‐informed ctDNA assay, which tracks up
to 16 somatic, clonal SNVs, detected distant melanoma relapse with a

sensitivity of 83% and specificity of 96% in the adjuvant stage III

setting. These rates were higher than observed in two prior studies of

ctDNA in post‐surgery melanoma patients using ddPCR to track a

single mutation in BRAF, NRAS, or TERT, one with a sensitivity of 20%

and specificity of 95% for distant relapse, the other with sensitivity of

55% and specificity of 94% for relapse at 12 months.26,39 The

F I GUR E 3 Association of ctDNA status with clinical outcome
for patients in cohort A. For the patients in the observation arm, the
median treatment start time of patients receiving adjuvant therapy

was considered as the start time. (A) Patients with stage III
melanoma stratified by ctDNA status at week 4 of adjuvant
therapy, with median DMFS of 11.5 months for ctDNA‐positive
group and not reached for the ctDNA‐negative group. (B) Patients
with stage III melanoma stratified by ctDNA status at week 6 of
adjuvant therapy, with median DMFS of 3.5 months for the ctDNA‐
positive group and not reached for the ctDNA‐negative group.
(C) Patients stratified by ctDNA clearance pattern, with median
DMFS not reached for ctDNA negative‐to‐negative and ctDNA

positive‐to‐negative groups, 3.5 months for ctDNA positive‐to‐
positive group, and 17.4 months for ctDNA negative‐to‐positive
group. ctDNA indicates circulating tumor DNA; DMFS, distant
metastasis‐free survival.
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correlation with worse DMFS of post‐surgical ctDNA detection

before adjuvant ICI (MRD time point) is also consistent with the

CheckMate 915 trial where detection of ctDNA before adjuvant ICI

predicted poorer DMFS.40 Although longitudinal ctDNA analyses

from that trial were not reported, in our study increasing ctDNA

levels after 6 weeks of adjuvant anti‐PD‐1 were also predictive of
significantly shorter DMFS, with a stronger correlation than

observed at the MRD time point, highlighting the value of monitoring

ctDNA dynamics. There was also a preliminary trend suggesting that

ctDNA‐positive patients receiving adjuvant anti–PD‐1 may experi-
ence better outcomes compared to those under observation.

Although such findings have been reported in urothelial carcinoma

and colorectal cancer,33,41 prospective studies would be needed to

determine whether changes in adjuvant systemic therapy in patients

with elevated ctDNA levels can lower the subsequent risk of relapse.

In the cohort of patients with advanced melanoma on first‐line
ICI, three of four patients with baseline ctDNA levels higher than

75th percentile died within 2 months of starting ICI. Similar obser-

vations have been reported where worse clinical outcomes were

noted for patients with high ctDNA levels (>500 copies/mL) at

baseline,12 because a very high ctDNA concentration at baseline may

be prognostic of relapse. A prior study also explored the predictive

value of the personalized, tumor‐informed ctDNA assay in 12 met-

astatic melanoma patients treated with pembrolizumab, where

changes in ctDNA levels from baseline after three cycles of ICI

correlated with PFS.29 In this cohort, we found that an increasing

ctDNA concentration at 6 weeks on anti–PD‐1 therapy in metastatic

melanoma was associated with a lack of response and significantly

reduced PFS. These results highlight the predictive value of ctDNA

status and early dynamics in advanced melanoma patients treated

with ICI, as well as the potential to identify high‐risk patients ahead
of radiologic and/or clinical progression who may benefit from

modification of their therapeutic regimen.

Furthermore, lack of ctDNA detection on surveillance post‐ICI
completion in metastatic melanoma was associated with improved

survival, because ctDNA‐positivity was observed to precede radio-
graphic progression by a median of 3.3 months during longitudinal

monitoring of patients. Although all ctDNA‐negative patients

remained progression‐free during follow‐up, these data support the
potential use of ctDNA as a noninvasive biomarker that can be used

at shorter intervals compared to radiographic imaging and provide a

real‐time assessment of the disease progression at a molecular level
before clinical relapse. An important future step will be to evaluate

prospectively if an earlier change in treatment based on ctDNA in-

crease will improve clinical outcomes.

In recent years, TMB has been explored as a genomic biomarker

to predict response to ICI treatments in patients with melanoma

because studies have shown conflicting results on the association of

high TMB with OS benefit on ICI.42–45 In this cohort, we were unable

to demonstrate a correlation between TMB alone and PFS in patients

with advanced melanoma treated with first‐line ICI therapy. How-
ever, the data suggest that combining ctDNA with TMB or ctDNA

alone appears to be better predictive biomarkers than TMB alone in

melanoma patients treated with ICI.

F I GUR E 4 Swimmer's plot shows clinical outcomes, duration of systemic therapy, and longitudinal ctDNA analysis for patients in
(A) cohort B and (B) cohort C. ctDNA indicates circulating tumor DNA.
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Although these findings are potentially applicable to clinical

practice, there are important limitations including the limited sample

size and duration of follow‐up, and variations in the treatment pa-
tients received. In summary, this study demonstrates the predictive

and prognostic value of personalized and tumor‐informed ctDNA

testing in patients with advanced melanoma treated with ICI and

suggests that early ctDNA dynamics may indicate tumor response to

ICI and detect disease progression during surveillance. The utility of

treatment change in melanoma based on ctDNA dynamics will need

to be validated in future clinical trials.

F I GUR E 5 (A and B) Kaplan–Meier estimates of PFS for patients with stage IV melanoma stratified by (A) for patients stratified by
ctDNA status at cycles 2–4 of first‐line ICI, median PFS was 16.4 months for ctDNA positive group and not reached for ctDNA negative group;
and (B) for patients stratified by ctDNA dynamics from baseline at cycle 2–4, median PFS 5.7 months for ctDNA increasing group and not

reached for ctDNA decreasing group. (C and D) Risk groupings according to early clinical response and ctDNA status. (C) Cycle 4 RECIST
groupings (columns) and cycles 2–4 ctDNA status (C; rows) or ctDNA dynamics (D; rows) are shown for 19 patients. (E–G) ctDNA trajectories.
(E) Patients with a complete or partial response by RECIST criteria. (F) Patients with PD to first‐line ICI with primary resistance. (G) Patient
with PD to first‐line ICI with acquired resistance. The y‐axis in (E)–(G) represents a positive or negative fold change in ctDNA levels compared
to the baseline. Filled circles represent ctDNA‐positivity, and open circles represent ctDNA‐negativity. ctDNA indicates circulating tumor
DNA; ICI, immune checkpoint inhibitor; PD, progressive disease; PFS, progression‐free survival; RECIST, Response Evaluation Criteria in Solid
Tumors.
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